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A B S T R A C T

The serine-threonine kinase mammalian target of rapamycin (mTOR) plays a major role in the
regulation of protein translation, cell growth, and metabolism. Alterations of the mTOR signaling
pathway are common in cancer, and thus mTOR is being actively pursued as a therapeutic target.
Rapamycin and its analogs (rapalogs) have proven effective as anticancer agents in a broad range
of preclinical models. Clinical trials using rapalogs have demonstrated important clinical benefits in
several cancer types; however, objective response rates achieved with single-agent therapy have
been modest. Rapalogs may be more effective in combination with other anticancer agents,
including chemotherapy and targeted therapies. It is increasingly apparent that the mTOR signaling
network is quite complex, and rapamycin treatment leads to different signaling responses in
different cell types. A better understanding of mTOR signaling, the mechanism of action of
rapamycin, and the identification of biomarkers of response will lead to more optimal targeting of
this pathway for cancer therapy.

J Clin Oncol 27:2278-2287. © 2009 by American Society of Clinical Oncology

INTRODUCTION

mTOR Signaling and Cancer

mTOR signaling plays a key role in cell growth,
protein translation, autophagy, and metabolism.
Activation of mTOR contributes to the pathogen-
esis of many tumor types. Upstream, phosphatidyl-
inositol 3�-kinase (PI3K)/Akt signaling is deregulated
through a variety of mechanisms, including overex-
pression or activation of growth factor receptors such
ashumanepidermalgrowthfactorreceptor2(HER-2)
and insulin-like growth factor receptor (IGFR), muta-
tions in PI3K and mutations/amplifications of Akt.1-4

Tumor suppressor phosphatase and tensin ho-
molog deleted from chromosome 10 (PTEN) is a
negative regulator of PI3K signaling. PTEN ex-
pression is decreased in many cancers, includ-
ing breast, endometrial, thyroid, and prostate
cancers; melanoma; and glioblastoma. PTEN
may be downregulated through several mecha-
nisms, including mutations, loss of heterozy-
gosity, methylation, aberrant expression of
regulatory microRNA, and protein instability.
Activated mTOR signaling is also associated with
tumor-predisposition syndromes: Cowden’s syn-
drome (PTEN mutations), Peutz-Jeghers syn-
drome (LKB1 mutations), tuberous sclerosis
(TSC1/2 mutations), and neurofibromatosis
(NF1 mutations).5-8 Thus mTOR signaling is ac-
tivated in conditions of proliferative dysregula-
tion and in many cancer types.

Activation of mTOR results in phosphoryla-
tion of its effectors, the best studied of which are
eukaryotic initiation factor 4E-binding protein 1
(4E-BP1) and S6 kinase 1 (S6K1). 4E-BP1 hyper-
phosphorylation leads to inhibition of 4E-BP bind-
ing to eukaryotic initiation factor 4E (eIF4E),
activating translation. eIF4E is rate-limiting for cap-
dependent translation. The translational efficiency
of mRNA with highly complex 5� untranslated re-
gions is especially dependent on eIF4E.9 eIF4E en-
hances cell proliferation, survival, and angiogenesis
by leading to selective translation of mRNA such as
cyclin D1, Bcl-2, Bcl-xL and vascular endothelial
growth factor (VEGF)9,10 as well as the nucleocyto-
plasmic transport of selected mRNA such as cyclin
D1.11 S6K1 is a key regulator of cell growth. It phos-
phorylates ribosomal protein S6 and, in some mod-
els, enhances the translation of mRNAs possessing a
5� terminal oligopyrimidine tract. S6K1 also phos-
phorylates other important targets, including insu-
lin receptor substrate 1 (IRS-1), eukaryotic initiation
factor 4B, programmed cell death 4, eukaryotic
elongation factor-2 kinase, mTOR, glycogen syn-
thase kinase 3, and S6K1 Aly/REF-like target.12 Both
eIF4E and S6K1 are implicated in cellular transfor-
mation, and their overexpression has been linked
to poor cancer prognosis.9,13,14 Rapamycin and its
analogs bind FK506 binding protein, and this
complex binds to mTOR, inhibiting downstream
signaling. Rapamycin causes cell cycle arrest in a
broad spectrum of tumor types. In addition to
direct antitumor effects, rapamycin also inhibits
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endothelial cell proliferation, hypoxia inducible factor 1 and VEGF
expression, angiogenesis, and vascular permeability.15,16 Taken to-
gether, these data demonstrate the importance of mTOR signaling in
cancer and support a role for mTOR as an antitumor target.

mTOR Signaling Network

The intricate mTOR signaling network (Fig 1) needs to be better
understood to effectively target the pathway. mTOR exists in two
multiprotein complexes: mTOR complexes 1 and 2 (mTORC1 and
mTORC2). mTORC1 consists of mTOR, mammalian LST8
(mLST8), proline-rich Akt substrate 40 (PRAS40), and raptor.17

PRAS40 has been proposed to be a negative regulator when bound to
mTORC1.18 PRAS40 itself may be a substrate of mTOR that is phos-
phorylated on activation by upstream regulators and released from
mTORC1.18 mTORC1 activation results in phosphorylation of 4E-
BP1 and S6K1. mTORC2 consists of mTOR, mLST8 (GßL), mSIN1,
PRR5 (protor), and rictor.19-23 mTORC2 phosphorylates Akt at
Ser473 and has been proposed to regulate the ability of integrin-linked
kinase to promote Akt phosphorylation.24-26 Akt Ser473 phosphory-
lation leads to full Akt activation and may affect its substrate specific-
ity, with activation of Akt toward the Forkhead transcription factor
FOXO and the apoptosis regulator BAD.19 mTORC2 has been pro-
posed to regulate phosphorylation of PKC�, control actin cytoskele-
ton and is linked to cell migration.19,24,27

mTOR signaling is regulated by growth factor signaling as well as
nutrient (amino acid) and energy status. PI3K/Akt signaling regulates

mTOR through phosphorylation/inactivation of mTOR’s negative
regulator TSC2.28-30 TSC2 contains a GTPase activating domain that
inactivates Rheb GTPase, which associates with and directly activates
mTORC1. Ras/MAPK signaling also inhibits TSC2.31 Furthermore,
TSC2 is regulated by cellular energy sensor AMP kinase.7 When cellu-
lar energy stores are reduced or AMP levels increase, AMPK is acti-
vated, phosphorylating and activating TSC2 to inhibit mTOR
signaling, reducing protein synthesis. Although the exact mechanism
of nutrient signaling remains unclear, amino acids are thought to
mediate mTORC1 signaling through class III PI3K hVps34.32

mTORC1 is rapamycin-sensitive; rapamycin results in dephos-
phorylation of 4E-BP1 and S6K1. In contrast, mTORC2 was originally
thought to be rapamycin-insensitive.19,24 However, rapamycin regu-
lates rictor phosphorylation, suggesting that components of mTORC2
may be regulated by rapamycin.33 Further, prolonged rapamycin
treatment reduces mTORC2 levels and inhibits Akt activation in some
cell lines.24,34

Rapamycin induces Akt activation in some models.35,36 Insulin-
like growth factor I (IGF-I) and insulin-dependent induction of the
PI3K/Akt pathway leads to feedback inhibition of signaling due to
mTOR/S6K-mediated phosphorylation and degradation of IRS-1.
Rapamycin-induced Akt activation has been attributed to loss of
this negative-feedback loop.35,36 The effect of rapamycin on Akt
may vary with drug dose, with lower doses leading to an increase in
Akt activation and higher doses diminishing Akt activity.16,37 The
effect on Akt also varies with cell type, with rapamycin leading to an
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Fig 1. The mammalian target of rapamycin (mTOR) signaling network. Arrows represent activation, bars represent inhibition. mTOR signaling regulates multiple critical
cellular processes by integrating energy and nutrient stutus and PI3K/Akt signaling induced by growth factors and insulin.
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increase in Akt phosphorylation in some cell lines, and no change or a
decrease in others.38 The response of Akt may depend on the activity of
upstream-signaling pathways and whether the mTORC2 complex
is maintained.

INCORPORATION OF mTOR-TARGETED THERAPY INTO
CLINICAL PRACTICE

Single-Agent Rapamycin Analogs in Clinical Trials

Cinical trials are ongoing with rapamycin and its analogs tem-
sirolimus (Torisel, CCI-779, Wyeth Pharmaceuticals, Madison, NJ),
everolimus (RAD001, Novartis, Basel, Switzerland). and AP23573
(Ariad Pharmaceuticals, Cambridge, MA) in various tumor types.
Although mTOR plays a central role in many biologic processes,
rapalogs have been generally well tolerated. Toxicities have included
asthenia, mucositis, nausea, cutaneous toxicity, diarrhea, hypertri-
glyceridemia, thrombocyopenia, hypercholesterolemia, elevated
transaminases, hyperglycemia, and pneumonitis.39-41 Toxicity was
more common with higher doses in some studies.42

mTOR is now a validated therapeutic target for renal cell carci-
noma (RCC). In a multicenter phase III trial, patients with previously
untreated, poor-prognosis metastatic RCC were randomized to re-
ceive 25 mg of temsirolimus intravenously weekly, interferon alfa, or
combination therapy.43 Patients who received temsirolimus alone had
a significantly longer overall survival (OS) and progression-free sur-
vival (PFS) than patients who received interferon alone (Table 1). The
OS in the combination group did not differ significantly from that of
the interferon group. The median OS with temsirolimus, interferon,
or the combination was 10.9, 7.3 and 8.4 months, respectively. The US
Food and Drug Administration approved temsirolimus for the treat-
ment of poor prognosis metastatic RCC in 2007. Recently, a random-
ized, double-blind, placebo-controlled phase III trial of everolimus
was performed in patients with RCC whose disease progressed on
VEGFR-targeted therapy.44 At the second interim analysis, the trial
showed a significant difference in efficacy and was halted early. The
hazard ratio was 0.3 (95% CI, 0.22 to0.4; P � .0001) and the median
PFS was 4 months for the everolimus arm versus 1.8 months for the
control arm. The probability of being progression-free at 6 months
was 26% for everolimus and 2% for placebo.

Rapalogs have been evaluated in several other cancer types
(Table 1). They have shown clear evidence of single-agent activity
in lymphoma. Phase II studies have shown objective response rates
(ORR) of 38% to 41% in mantle-cell lymphoma45,46 and 35% in
non–mantle-cell non-Hodgkin’s lymphoma.47 A phase III trial in
refractory mantle-cell lymphoma demonstrated a 22% ORR with
temsirolimus given at 175 mg weekly for 3 weeks followed by 75 mg
weekly, compared with 2% for the investigator’s choice of therapy
(P � .0019).48 PFS rates were 4.8 months with the 75-mg weekly
temsirolimus and 1.9 months with investigators’ choice treatment
(P � .009).48 Rapamycin has led to regression of Kaposi’s sarcoma in
renal transplant recipients.49 In preliminary analysis of phase II trials,
rapalogs have also shown promise in patients with sarcoma and endo-
metrial cancer.50,51

Rapamycin has also been evaluated in syndromes of proliferative
dysregulation. Clinical benefit has been reported with facial angiofi-
broma, renal angiolypomas, and lymphangiomyomatosis.52-54 Clini-
cal trials are ongoing for patients with neurofibromatosis,

Cowden’s Syndrome, and tuberous sclerosis, as well as for sporadic
lymphangiomyomatosis—a condition associated with somatic
mutations in the tuberous sclerosis genes.

Overall rapalogs have achieved modest ORRs. For example, in
metastatic poor-prognosis RCC, temsirolimus treatment was associ-
ated with an improvement in PFS and OS, but it was only associated
with a 8.6% ORR.43 Though everolimus improved the PFS for RCC
that progressed on VEGFR-targeted therapy, the ORR was 1%.44 Thus
for rapalogs, high ORRs may not be needed to achieve clinical benefit.
As demonstrated by preclinical studies,55 rapalogs used alone are
cytostatic in most tumor types and clinically may primarily stabi-
lize disease.

Patient Selection for Treatment With

Rapamycin Analogs

Although mTOR signaling is commonly deregulated in cancer,
rapalogs have failed to show any appreciable single agent activity in
many tumor types. The clinical benefit seen in different tumor histol-
ogies have been attributed to rapamycin’s effects on different onco-
genic drivers: angiogenesis in renal cell carcinoma and Kaposi’s
sarcoma, t(11;14)(q13;q32) translocation with cyclin D1 overexpres-
sion in mantle-cell lymphoma, PTEN loss for endometrial cancer, and
activation of IGF-1R signaling in sarcomas. However, these attribu-
tions have remained controversial. Further, the low ORRs seen with
unselected patient cohorts demonstrate that histology-based patient
selection is insufficient. Based on preclinical data, a variety of predic-
tors of response have been proposed, but most have not yet been
clinically validated. Correlative studies in many ongoing and com-
pleted clinical trials have been limited due to availability of evaluable
samples and the small numbers of patients achieving objective re-
sponses. Thus there remains an urgent need to better understand
rapamycin’s mechanism of action and to identify predictive markers
of response that can be used to prospectively select patients who will
derive the greatest benefit from rapalogs.

Patients with decreased PTEN may especially benefit from
rapalogs. mTOR inhibition reduces neoplastic proliferation and
tumor size in PTEN� mice, demonstrating that mTOR is the
major effector of oncogenic PI3K signaling.56 Studies with isogenic
PTEN�/� and PTEN�/� mouse cells and with human cell lines
with defined PTEN status have shown that PTEN-deficient tumors
are preferentially inhibited by mTOR inhibition.57-60 However, PTEN
loss was not able to predict sensitivity to everolimus in glioblastoma
orthotopic xenografts. The predictive role of PTEN in clinical trials
remains controversial.61,62

Activation of PI3K signaling, regardless of mechanism (PTEN
loss or activated receptor-tyrosine-kinase signaling), may sensitize
tumors to mTOR inhibition.63 Tumor growth conferred by Akt
activation is also reversed by mTOR inhibitors.57 Rapalogs also
block tumor growth induced by oncogenic PIK3CA mutations,64

suggesting that activating PI3K mutations may also have predic-
tive value.

Predictive markers have been assessed in few clinical trials to
date (Table 2). In a phase II trial of temsirolimus in RCC, paraffin-
embedded tissue was available from 20 patients, five with a re-
sponse (one partial and four minor).65 A positive association of
p-S6 (Ser235) expression and a trend toward positive expression of
p-Akt (Ser473) was found. Patients without high p-Akt or p-S6 expres-
sion did not achieve a response. No correlation was seen between
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response and carbonic anhydrase IX, PTEN or Von-Hippel Lindau
mutation status. Iwenofu et al assessed the predictive value of p-S6
(Ser235/236) in patients with sarcoma who received deforolimus
(with or without chemotherapy).66 Among p-S6 high expressors
there were eight patients (73%) with stable disease and three pa-
tients (27%) with progression; among low expressors there were
three patients (33%) with stable disease and six (67%) experienced
progression (P � .05). Biomarkers were assessed in a phase II trial

of temsirolimus in neuroendocrine tumors using archival samples
and pretreatment biopsies. Although high p-mTOR (S2448) and
p-S6 (Ser235/236) in archival samples were not predictive of re-
sponse, high p-mTOR on freshly procured pretreatment biopsies
was predictive (P � .01), with a trend towards response with high
p-S6 on the pretreatment samples.67

The assessment of markers of response remains an obstacle to
predictive marker development. Immunohistochemistry (IHC) with

Table 1. Efficacy of Rapamycin Analogs in Selected Clinical Trials

Study Treatment Phase Disease No. of Patients
Objective Response

(PR or CR, %)

Hudes, 200743 III RCC
Temsirolimus (25 mg IV qwk) 209� 8.6
Interferon 207� 4.8
Temsirolimus � interferon 210� 8.1

Motzer, 200844 III RCC
Everolimus (10 mg po qd) 272� 1
Placebo 138� 0

Hess, 200848 III Mantle-cell lymphoma
Temsirolimus (175 mg � 3 doses, followed by

75 mg qwk)
54� 22

Temsirolimus (mg � 3 doses, followed by 25
mg qwk)

54� 6

Investigator’s choice 54� 2
Galanis, 2005105 II GBM

Temsirolimus (250 mg IV qwk) 64† 0‡
Atkins, 200441 II RCC

Temsirolimus (250 mg IV qwk) 37� 8.1
Temsirolimus (75 mg IV qwk) 38� 7.9
Temsirolimus (25 mg IV qwk) 36� 5.6

Witzig, 200546 II Mantle-cell lymphoma
Temsirolimus (250 mg IV qwk) 34† 38

Chan, 200542 II Breast cancer
Temsirolimus (250 mg IV qwk) 54� 7.4
Temsirolimus (75 mg IV qwk) 55� 10.9

Margolin, 2005106 II Melanoma
Temsirolimus (250 mg IV qwk) 33† 3

Duran, 200667 II Neuroendocrine
Temsirolimus (25 mg IV qwk) 36� 5.6

Chawla, 200650 II Sarcoma
Deforolimus (12.5 mg IV qd � 5, every 2 wks) 193† 3¶

Colombo, 200751 II Endometrial cancer
Deforolimus (12.5 mg IV qd � 5, every 2 wks) 27† 7�

Pandya, 200786 II SCLC
Temsirolimus (250 mg IV qwk) 41† 0
Temsirolimus (25 mg IV qwk) 44† 2.3

Smith, 200847 II Lymphoma (non–mantle-cell, non-Hodgkins’)
Temsirolimus (25 mg IV qwk) 74� 35

Rizzieri, 2008107 II Hematologic malignancies
Deforolimus (12.5 mg IV qd � 5, every 2 wks) 52† 10

Slomovitz, 200862 II Endometrial
Everolimus (10 mg po qd) 25† 0¶

Ansell, 200845 II Mantle-cell lymphoma
Temsirolimus (25 mg IV qwk) 27† 41

Abbreviations: PR, partial response; CR, complete response; RCC, renal cell carcinoma; IV, intravenously; po, by mouth; qd, every day; qwk, every week; GBM,
glioblastoma multiforme; SCLC, small-cell lung cancer.

�No. of intent-to-treat patients.
†No. of assessable patients.
‡Thirty-six percent of patients had evidence of improvement on neuroimaging.
§Stable disease in 25% of patients.
�Stable disease in 26% of patients.
¶Stable disease in 44% of patients.
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PTEN and with phospho-specific antibodies such as p-Akt, p-S6K,
and p-S6 is challenging. Their staining and quantification have not
been standardized. Concerns exist about the stability of phosphopro-
teins.68 The results of phospho-marker testing may vary based on
specimen acquisition and processing, and may be influenced by tu-
mor heterogeneity. Further, clinicians often assess markers in the
primary tumor to make therapeutic decisions for metastatic disease;
however, concordance of p-Akt and p-4E-BP1 levels by IHC in pri-
mary breast tumors and matched distant metastases was found to be
poor.69 This may reflect true biologic heterogeneity or may simply be
a reflection of the poor reproducibility and process sensitivity of IHC
with phospho-specific antibodies. An alternate approach may be more
quantitative assays such as enzyme-linked immunosorbent array with
fresh samples. Streamlining higher throughput strategies (eg, reverse-
phase proteomic arrays) to quantitate the activity of several pathways
simultaneously may be considered. Evaluating multiple markers may
demonstrate a more robust evaluation of the oncogenic signaling
drivers of each tumor. As transcriptional profiling becomes more
commonplace, there is also a need to identify transcriptional profiles
that correlate with mTOR activation and profiles predictive of re-
sponse. Identification of genomic alterations that confer rapamycin
sensitivity is also highly desirable, since genomic aberrations may be
more reliably tested in paraffin.

Pharmacodynamic Markers of Target Inhibition

For mTOR, the two best studied targets are S6K1 and 4E-BP1;
thus, most studies have concentrated on these proteins. Preclinically
rapamycin and its analogs inhibit phosphorylation of 4E-BP1 and
S6K1 in tumor, skin and peripheral blood mononuclear cells (PB-
MCs).70,71 4E-BP1 has been reported to be hypophosphorylated in
PBMCs71 while S6K1 activity has little intrasubject variation (14%)70;
thus, PBMC S6K1 activity has been pursued in most pharmacody-
namic (PD) studies. Time and dose-dependent inhibition of S6K1 was
demonstrated in PBMCs. In preclinical models, a correlation with
antitumor effect and prolonged (� 7 days) PBMC-derived S6K1 ac-
tivity has been observed.71 For everolimus, preclinical simulations
suggest that the administration regimen has a greater influence on

S6K1 activity in the tumor than PBMCs, with daily dosing exerting
greater activity than weekly doses,72 sustained S6K inhibition occur-
ring with � 20-mg everolimus weekly and � 5 mg daily.73 These
findings highlight that although PBMC S6K1 activity is often mea-
sured as a PD marker, it is not a perfect readout of target inhibition in
the tumor.

In an elegant phase I study of everolimus in solid tumors, pre-
treatment and on-treatment (day 22) tumor and skin biopsies were
evaluated.74 mTOR signaling was inhibited at all dose and schedules
tested (5 and 10 mg daily, and 20, 50, and 70 mg weekly). Dose- and
schedule-dependent inhibition of mTOR was observed with near-
complete inhibition of p-S6 and p-eIF4G at 10 mg/d and � 50 mg/wk.
The relative inhibition of these markers differed with different dose
levels. With daily dosing, p-S6 was inhibited with both dose levels,
while p-eIF4G inhibition was partial with 5 mg but complete with 10
mg. With weekly dosing, p-S6 inhibition was almost complete at all
dose levels. Inhibition was sustained in biopsies obtained 24 hours
before the next weekly dose. In contrast, p-eIF4G inhibition was com-
plete at 24 hours for all dose levels, but was sustained only for � 50
mg/wk. p-4E-BP1 inhibition was not observed in all patients. Al-
though there was good concordance of pathway inhibition in tumor
and skin, p-4E-BP1 reduction was more profound in skin than tu-
mors. This study clearly demonstrates that inhibition of mTOR sig-
naling may be dependent on dose and schedule, and downstream
targets may not always be inhibited concordantly.

Pharmacodynamic Markers of Response

To identify the potential determinants of response to rapamycin,
one needs to better understand the downstream effects of mTOR
inhibition in rapamycin-sensitive versus -resistant tumors and better
elucidate rapamycin’s mechanism of action. These molecular changes
can then be followed to determine whether a patient is responding
early in the treatment course, either through serial biopsies of the
tumor or through molecular imaging. These markers may not only
assist in better prospective patient selection, but would also allow
therapy to be modified early if there is no molecular response.

Table 2. Potential Predictors and Pharmacodynamic Markers of Response in Clinical Trials

Marker Disease Treatment End Point

Cho, 200765 Renal cell carcinoma Temsirolimus
High p-S6 (Ser235) Response (PR or MR)
High p-Akt (Ser473; trend)�

Duran, 200667 Neuroendocrine Temsirolimus
High p-mTOR (Ser2448) Response (not defined)
High p-S6 (Ser235/236; trend) Response (not defined)
Increase in p-Akt (Ser473) Increased TTP
Decrease in p-mTOR (Ser 2448) Increased TTP

Slomovitz, 200862 Endometrial Everolimus
Low PTEN (trend) SD (v PD)

Iwenofu, 200866 Sarcoma Deforolimus with or without adriamycin
High p-S6 (Ser235/236) SD (v PD)

Cloughesy, 200880 Glioblastoma Rapamycin
Increase in p-PRAS40 (Thr246) Decreased TTP

Abbreviations: PR, partial response; MR, minor response; mTOR, serine-threonine kinase mammalian target of rapamycin; TTP, time to progression; PTEN,
phosphatase and tensin homologue deleted from chromosome 10; SD, stable disease; PD, progressive disease.

�Trend, or difference in marker expression between responders and nonresponders, did not reach statistical significance.
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Differential intrinsic sensitivity to rapamycin and analogs is not
explained by differences in blockade of mTOR signaling pathway, at
least not by inhibition of S6K1 or S6 phosphorylation.57,58,63,75 A
correlation was found between rapamycin-mediated decline in p-4E-
BP1 T70 with growth inhibition in some xenograft models,76 but in
other preclinical studies, inhibition of p-4E-BP1 did not correlate with
sensitivity.57 Taken together, decrease of downstream signaling ap-
pears to be useful for determining whether a biologically relevant drug
dose is achieved; however, this finding does not necessarily correlate
with growth inhibition and thus is not a good PD marker of response.

Pathway inhibition may not be a useful marker of response be-
cause different components of downstream signaling have differing
thresholds for inhibition and the critical mediators of rapamycin’s
growth inhibitory effect may not be measured. Thus, if one focused on
p-S6 alone, mTOR signaling may appear to be inhibited, while
different mTOR effectors have different sensitivity to mTOR in-
hibitors.74 The mTOR/4E-BP1 axis which regulates eIF4E avail-
ability and cap-dependent translation may be the major driver of
rapamycin-mediated growth inhibition, especially since eIF4E is a
growth-regulatory target itself10,77 and in some models confers rapa-
mycin resistance.78 Alternately, the pathway may be active but may
not be the oncogenic driver; thus, inhibition of the pathway may be
insufficient to achieve a growth-inhibitory effect.

Additionally, mTOR inhibition may in turn activate compensa-
tory pathways such as Akt and MAPK signaling,79 which may theoret-
ically limit antitumor activity. However, Akt activation has been
observed even in rapamycin-sensitive preclinical models; thus, the
value in assessing Akt activation as a marker of rapamycin resistance
remains unclear.

In a phase I trial for recurrent PTEN-deficient glioblastoma,
Cloughesy et al80 evaluated p-PRAS40 (Thr246) as a biomarker of Akt
activity in surgical specimens obtained after 1 week of rapamycin
treatment. This study differed from the usual pretreatment and
on-treatment biopsy design as untreated primary tumor surgical
specimens (S1) were compared with recurrent tumors treated with
rapamycin for 1 week before surgery (S2). S1 and S2 samples from
nine patients who did not receive rapamycin, were used as control and
did not show a change in p-Akt. Of 14 patients in the rapamycin study,
seven had an increase in p-PRAS40 in their S2 sample (P � .0047).
Patients were maintained on rapamycin postoperatively. An increase
in S2 p-PRAS40 was associated with a shorter time to progression
(P � .05). Although it can not be determined whether p-PRAS40 was
prognostic or whether induction of p-PRAS40 was predictive of poor
response, these findings highlight the importance of assessing the
p-Akt and its phosphorylation targets as potential PD markers.

Identification of the major mediators of drug response will be
critical to identify ideal PD markers of response. Preclinical studies
have identified a variety of alterations that occur on rapamycin treat-
ment that may reflect direct or indirect drug effects (Table 3). These
changes, alone or in combination, may be pursued as PD markers of
response. Potential PD markers of response may be prioritized by
concentrating on alterations critical to rapamycin’s growth inhibitory
effect. For example, rapamycin decreases cyclin D1 levels in several
models.63,81-83 Further, a decrease in cyclin D1 plays an important role
in rapamycin-mediated growth inhibition.82,83 However, although
rapamycin decreases cyclin D1 in rapamycin-sensitive but not
rapamycin-resistant cells in some studies, others report no change in
cyclin D1 expression in either sensitive or resistant cells.58,63 It is

unlikely that any single marker will sufficiently separate responders
from nonresponders. Evaluating a panel of rapamycin effectors may
be preferable for PD monitoring. Molecular imaging with tracers that
assess metabolic and proliferative function ([18F]fluorodeoxyglucose
and [18F]fluorothymidine uptake) has also shown promise in preclin-
ical models.15,84 Molecular imaging with novel tracers of pathway
activity is also being pursued.

Effect of Dose and Schedule Selection on Efficacy

The clinical development of rapalogs has focused on the effect of
dose and schedule on target inhibition. However, the ideal dose and
schedule for rapamycin and analogs to achieve antitumor effect re-
mains controversial. Rapamycin and everolimus have both shown
dose-dependent antitumor efficacy in xenograft models.71 Further,
lower doses of rapamycin leads to Akt activation, whereas higher doses
diminish p-Akt in some models.16,37 In addition, although lower con-
centrations of temsirolimus and rapamycin have a selective growth
inhibitory effect, at higher micromolar concentrations they have a
profound antiproliferative effect in all tested cell lines with a decline in
global protein synthesis and an increase in phosphorylation of eukary-
otic elongation factor-2 kinase and eIF2�.85 This highlights another
means through which dose and schedule selection may affect clini-
cal outcome.

Dosing regimens have been compared in a few randomized trials.
In the phase II temsirolimus trial in RCC, 25-, 75-, and 250-mg
intravenous doses were compared (Table 1): the ORR were 5.6%,

Table 3. Selected Downstream Effects of Rapamycin

Target Rapamycin Effect Reference No.

S6K1 (T389, T421/S424, T229) Decrease 12
S6 (Ser235/236, Ser240/244) Decrease 74
4E-BP1 (Thr 37�, Thr 46�; T70. Ser 65) Decrease 74,108,109
eIF-4G (Ser1108; Ser1148; Ser1192) Decrease 74,110,111
eIF-4B (Ser 422) Decrease 112
FOXO1 (Ser256) Decrease 19
PRAS40 (Ser221, Ser183) Decrease 18
SGK1 (Ser422, Thr2560) Decrease 113
Cyclin D1 Decrease 34,63,81,83,115
Cyclin D3 Decrease 75
c-Myc Decrease 75,81
GLUT-1 Decrease 34
VEGF Decrease 90
HIF-1� Decrease 90
Ki-67 Decrease 80,91
Dusp6 Decrease 116
eEF2 (Thr56) Increase† 85
eIF2� (Ser51) Increase† 85
c-Jun (S63) Increase‡ 114
p27 Increase 75

Abbreviations: S6K1, S6 kinase 1; 4E-BP1, 4E-binding protein 1; eIF, eukary-
otic initiation factor; PRAS40, proline-rich Akt substrate 40; SGK1, Serum/
glucocorticoid-regulated kinase; GLUT-1, glucose transporter protein; VEGF,
vascular endothelial growth factor; HIF-1�, hypoxia inducible factor 1�; eEF2,
eukaryotic elongation factor 2 kinase.

�Although Thr 37/46 is phosphorylated in vitro by serine-threonine kinase
mammalian target of rapamycin (mTOR), these residues are proposed to
relatively resistant to rapamycin in the presence of serum, but they are
sensitive to rapamycin under serum starvation.

†At high micromolar concentrations.
‡In cells lacking functional p53.
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7.9%, and 8.1%, respectively.41 The time to progression was 6.3, 6.7,
and 5.2 months, respectively, and median survival was 13.8, 11.0, and
17.5 months, respectively. These were not statistically different and the
authors concluded that efficacy was not significantly influenced by
dose level. Thus, the 25-mg dose was pursued for the RCC trials that
led to US Food and Drug Administration approval. However, some
clinical data suggest that dose may be relevant to efficacy.86 In the
phase III trial of temsirolimus in mantle-cell lymphoma,48 the 75-mg
weekly regimen had a significantly higher ORR compared with inves-
tigator’s choice treatment, while the 25-mg weekly regimen did not
(Table 1). Furthermore, the 75-mg regimen significantly prolonged
PFS (4.8 v 1.9 months; P � .0009), while the improvement in PFS with
the 25-mg regimen (3.4 months) did not reach statistical significance
(P � .0618). Thus higher doses may be more effective in some tumor
types. The ideal dose and schedule needs to be further studied.

COMBINATION OF mTOR-TARGETED THERAPIES AND OTHER
ANTICANCER AGENTS

In clinical trials, rapalogs have predominantly led to disease stabiliza-
tion rather than tumor regression. Thus, for most tumor types,
mTOR-targeted therapies will likely be used in combination therapy,
with the expectation that this may induce a cytotoxic rather than
cytostatic response and subsequent tumor regression.

Combination With Chemotherapy

mTOR inhibitors have been found to be additive or synergistic
with paclitaxel, carboplatin, cisplatin, vinorelbine, doxorubicin, and
campthotecin.55,59,87,88 Compared with single agent therapy, the com-
bination of rapamycin with chemotherapy enhances apoptosis in vitro
and enhances antitumor efficacy in vivo.55,87-89 Ongoing clinical trials
are currently evaluating the efficacy of rapamycin and its analogs in
combination with a broad spectrum of chemotherapeutic agents.

Combination With IGF-IR Inhibitors

The rapamycin-induced Akt activation observed in some cancer
cell lines and in clinical trials increased interest in overcoming this
feedback loop activation by using mTOR inhibitors in combination
with antagonists of upstream signaling such as IGF-IR inhibi-
tors.35,36,90 IGF-IR inhibition prevents rapamycin-induced Akt ac-
tivation and sensitizes tumor cells to mTOR inhibition in preclinical
models.35,90 The combination of rapalogs and IGF-IR inhibitors are
now being studied in clinical trials.

Combination With Octreotide

In neuroendocrine tumors, although a phase II trial with tem-
sirolimus obtained a relatively low ORR, a phase II trial of everolimus
in combination with octreotide demonstrated clinical efficacy with an
ORR of 20% by intent-to-treat analysis.91 This may reflect differences
between patient cohorts, differences in mTOR inhibition with differ-
ent drug and dosing regimens, or may be attributable to the combina-
tion of mTOR inhibitors with octreotide in the latter trial.
Somatostatin analogs such as octreotide decrease PI3K/Akt signaling
in some models92 and thus theoretically may enhance rapamycin’s
antitumor activity. However, preclinical work in carcinoid cells dem-
onstrated that although rapamycin causes significant growth inhi-
bition in vitro and in vivo, it did not enhance rapamycin’s
antiproliferative effects and did not inhibit rapamycin-mediated Akt

activation.93 Yet, preclinical models have clear limitations. Random-
ized prospective trials are being conducted to determine whether
octreotide enhances the antitumor effects of mTOR inhibitors.

Combination With Trastuzumab

In HER-2–positive breast cancer cell lines, trastuzumab has been
shown to inhibit feedback-loop activation of Akt.94 This is especially
notable as PTEN loss is a known mediator of trastuzumab resis-
tance,95,96 providing another rationale to use mTOR inhibitors to
restore or enhance trastuzumab sensitivity. In vitro, low doses of
everolimus significantly increased growth inhibition by trastuzumab,
and in vivo everolimus enhanced the antitumor efficacy of trastu-
zumab by a modest amount.94 The combination of everolimus and
trastuzumab is currently in clinical trials. A recent multicenter phase I
trial of everolimus in combination with paclitaxel and trastuzumab in
patients with HER-2–overexpressing metastatic breast cancer with
prior resistance to trastuzumab demonstrated that the combination
was well tolerated, with the preliminary evidence of efficacy.97

Combination With Antiestrogen Therapy

Akt/mTOR signaling has been associated with resistance to en-
docrine therapy in breast cancer,98 providing rationale for combining
endocrine therapy with mTOR inhibitors. In preclinical models, rapa-
logs enhance the efficacy of selective estrogen receptor modulators
tamoxifen, raloxifene, and ERA-923; estrogen receptor downregula-
tor fulvestrant; and aromatase inhibitor letrozole.71,99-101 However,
the interim analysis of a phase III randomized placebo controlled trial
of letrozole with or without temsirolimus reported no improvement
in PFS102; final analysis has not been published. The combination of
everolimus with letrozole has been pursued with more promising
results. A phase I study of everolimus with letrozole demonstrated
some clinical responses.103 The combination of daily oral everolimus
plus letrozole versus placebo plus letrozole was recently tested in a
randomized phase II neoadjuvant trial in 270 postmenopausal women
with estrogen receptor–positive breast cancer.61 The clinical response
rate with everolimus and letrozole was significantly more than letro-
zole alone at the preplanned alpha of 0.1 (68% v 59%; P � .062). These
results were confirmed by ultrasound (objective response 58% v 47%;
P � .035). Cell cycle response was also higher in the combination arm
(57% v 30% for Ki-67 � 2 at day 15; P � .01). Thus, mTOR inhibition
may increase the efficacy of endocrine therapy. However, everolimus
was associated with an increase in grade 3/4 adverse events (22.6% in
the combination arm v 3.8% in the letrozole arm). Although, the
addition of everolimus to letrozole, a drug that has excellent baseline
tolerability, increases adverse effects,61,103 this strategy may be war-
ranted in patients with higher-risk hormone receptor–positive tu-
mors, especially if predictors of response can be utilized to select
patients most likely to benefit from this combination.

NEW mTOR-TARGETED THERAPIES

A new generation of mTOR inhibitors is being developed. In contrast
to rapalogs, catalytic site inhibitors of mTOR inhibit both mTORC1
and mTORC2, and inhibition of mTORC2 will affect the activation of
Akt. Agents such as BEZ235 (Novartis, East Hanover, NJ) and EX147
(Exelixis, San Francisco, CA) are dual PI3K/mTOR inhibitors and
thus may bypass feedback loops, potentially increasing their efficacy
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compared with rapalogs. The tolerability and efficacy of these agents
are currently being tested in clinical trials. In addition, other strategies
to downregulate mTOR signaling, such as the use of antidiabetic drug
metformin—an activator of AMPK104—are being pursued in clini-
cal trials.

SUMMARY AND CONCLUSION

mTOR is now a validated target in the treatment of some tumor types.
Careful patient selection and rational selection of combination thera-
pies will enhance the success of mTOR therapies. Used effectively,
mTOR inhibitors will play an important role in delivering more effec-
tive, personalized cancer therapy.
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